AI

What is Mistral 8x7B? Performance, Capabilities, and How to Access the Open-Weight Model?

Mistral 8x7B is an open-weight LLM with 56 billion expert networks. Outperforming giants like GPT-3.5 in text generation, translation, and more, it excels with fine-tunable, transparent performance. Read this article to explore it performance level, capabilities and steps to access the open weight model.

The world of artificial intelligence is pushing boundaries with the latest addition, Mixtral 8x7B. It is a revolutionary open-weight model with unique architecture, offering impressive performance and accessibility.

Most importantly, it focuses on making the community benefit from original models to foster new inventions and uses.

In this article, we will discuss the large language model, its capabilities and strengths, and how you can access this exciting technology.

What is the Mistral 8x7B?

Mixtral 8x7B is Mistral AI’s latest innovation. The “8x7B” refers to its structure: 8 groups of 7 billion parameter experts, resulting in a total of 56 billion parameters. It is a high-quality sparse mixture of expert models (SMoE) with open weights. According to Mistral AI’s official blog, it outperforms Llama 2 70B on most benchmarks, with 6x faster inference. It is seen as the strongest open-weight model with a permissive license and the best model overall regarding cost/performance trade-offs.

Mixtral Capabilities

Unlike traditional LLMs, SMoE is based on a collection of smaller, specialized experts to tackle different aspects of a task. It allows efficient computation while maintaining high accuracy and

  • gracefully handles a context of 32k tokens.
  • handles English, French, Italian, German, and Spanish.
  • shows strong performance in code generation.
  • can be fine-tuned into an instruction-following model that achieves a score of 8.3 on the MT-Bench.

Mixtral 8x7B: Performance

Mixtral is a decoder-only model where the feedforward block picks from a set of eight distinct groups of parameters. The Mistral AI blog says, “At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively.

This technique increases the number of parameters in a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Concretely, Mixtral has 46.7B total parameters but only uses 12.9B parameters per token. It, therefore, processes input and generates output at the same speed and for the same cost as a 12.9B model.”

Mistral 7B Outperforms LLaMA 2 and GPT-3.5 by running 6x faster

Mixtral is pre-trained on data extracted from the open Web and masters French, German, Spanish, Italian, and English. Mistral AI compared Mixtral with the Llama 2 family and the GPT3.5 base model. And it matches or outperforms Llama 2 70B, as well as GPT3.5, on most benchmarks.

Source: Mistral AI

In the above figure, Mistral measures the quality versus inference budget tradeoff. Mistral 7B and Mixtral 8x7B belong to a family of highly efficient models compared to Llama 2 models. It displays more positive sentiments than Llama 2 on BOLD, with similar variances within each dimension.

How do I access Mistral 8x7B?

Like any large language model, Mixtral utilizes prompts to understand requests and produce outputs. Depending on the chosen platform and programming language, you need to set up libraries and dependencies for interacting with the model. Also, you can explore different versions and choose the one that suits your needs. According to the official Mistral website, “To enable the community to run Mixtral with a fully open-source stack, we have submitted changes to the vLLM project, which integrates Megablocks CUDA kernels for efficient inference.”

Currently, Mixtral 8x7B is available in beta. Register to get early access to all generative and embedding endpoints. It can ban some outputs from constructing applications that require a strong level of moderation, as exemplified here with proper preference tuning. 

In conclusion, Mixtral 8x7B, with its open-source nature, remarkable performance, and diverse capabilities, is a revolutionary innovation in the LLM landscape. It aims to explore the power of AI and push the boundaries of both users and organizations. As the Mixtral promises to evolve and modify, it can be transformative, leading to a new era of human-AI collaboration.

Mistral Drops OpenAI Language Model via Torrent Link

This post was last modified on February 13, 2024 6:45 am

Winny

Winny is a fervent tech writer with a flair for simplifying complex concepts into layman’s language. Highly skilled in crafting content and translating tech jargon, she delivers articles, guides and document information to educate and empower. Get into the world of technology with the best chauffeur, bridging the gap between you and industrial science with clarity and precision.

Recent Posts

Google is moving Android news to a virtual event before I/O

Google is launching The Android Show: I/O Edition, featuring Android ecosystem president Sameer Samat, to…

April 29, 2025

Top Generative AI Companies of the World 2025

The top 11 generative AI companies in the world are listed below. These companies have…

April 28, 2025

Veo 2 extends access to more Gemini Advanced Users

Google has integrated Veo 2 video generation into the Gemini app for Advanced subscribers, enabling…

April 25, 2025

Perplexity launches the iPhone voice assistant

Perplexity's iOS app now makes its conversational AI voice assistant compatible with Apple devices, enabling…

April 24, 2025

Ola’s AI arm Krutrim intends to raise $300 million

Bhavish Aggarwal is in talks to raise $300 million for his AI company, Krutrim AI…

April 22, 2025

World’s first humanoid half-marathon pits people against robots

The Beijing Humanoid Robot Innovation Center won the Yizhuang Half-Marathon with the "Tiangong Ultra," a…

April 22, 2025